3.11 \(\int \frac{a+b \tanh ^{-1}(c x)}{x^5} \, dx\)

Optimal. Leaf size=48 \[ -\frac{a+b \tanh ^{-1}(c x)}{4 x^4}-\frac{b c^3}{4 x}+\frac{1}{4} b c^4 \tanh ^{-1}(c x)-\frac{b c}{12 x^3} \]

[Out]

-(b*c)/(12*x^3) - (b*c^3)/(4*x) + (b*c^4*ArcTanh[c*x])/4 - (a + b*ArcTanh[c*x])/(4*x^4)

________________________________________________________________________________________

Rubi [A]  time = 0.0266312, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {5916, 325, 206} \[ -\frac{a+b \tanh ^{-1}(c x)}{4 x^4}-\frac{b c^3}{4 x}+\frac{1}{4} b c^4 \tanh ^{-1}(c x)-\frac{b c}{12 x^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x])/x^5,x]

[Out]

-(b*c)/(12*x^3) - (b*c^3)/(4*x) + (b*c^4*ArcTanh[c*x])/4 - (a + b*ArcTanh[c*x])/(4*x^4)

Rule 5916

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcT
anh[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1))/(1 -
 c^2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{a+b \tanh ^{-1}(c x)}{x^5} \, dx &=-\frac{a+b \tanh ^{-1}(c x)}{4 x^4}+\frac{1}{4} (b c) \int \frac{1}{x^4 \left (1-c^2 x^2\right )} \, dx\\ &=-\frac{b c}{12 x^3}-\frac{a+b \tanh ^{-1}(c x)}{4 x^4}+\frac{1}{4} \left (b c^3\right ) \int \frac{1}{x^2 \left (1-c^2 x^2\right )} \, dx\\ &=-\frac{b c}{12 x^3}-\frac{b c^3}{4 x}-\frac{a+b \tanh ^{-1}(c x)}{4 x^4}+\frac{1}{4} \left (b c^5\right ) \int \frac{1}{1-c^2 x^2} \, dx\\ &=-\frac{b c}{12 x^3}-\frac{b c^3}{4 x}+\frac{1}{4} b c^4 \tanh ^{-1}(c x)-\frac{a+b \tanh ^{-1}(c x)}{4 x^4}\\ \end{align*}

Mathematica [A]  time = 0.0082598, size = 70, normalized size = 1.46 \[ -\frac{a}{4 x^4}-\frac{b c^3}{4 x}-\frac{1}{8} b c^4 \log (1-c x)+\frac{1}{8} b c^4 \log (c x+1)-\frac{b c}{12 x^3}-\frac{b \tanh ^{-1}(c x)}{4 x^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x])/x^5,x]

[Out]

-a/(4*x^4) - (b*c)/(12*x^3) - (b*c^3)/(4*x) - (b*ArcTanh[c*x])/(4*x^4) - (b*c^4*Log[1 - c*x])/8 + (b*c^4*Log[1
 + c*x])/8

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 58, normalized size = 1.2 \begin{align*} -{\frac{a}{4\,{x}^{4}}}-{\frac{b{\it Artanh} \left ( cx \right ) }{4\,{x}^{4}}}-{\frac{{c}^{4}b\ln \left ( cx-1 \right ) }{8}}-{\frac{bc}{12\,{x}^{3}}}-{\frac{b{c}^{3}}{4\,x}}+{\frac{{c}^{4}b\ln \left ( cx+1 \right ) }{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x))/x^5,x)

[Out]

-1/4*a/x^4-1/4*b/x^4*arctanh(c*x)-1/8*c^4*b*ln(c*x-1)-1/12*b*c/x^3-1/4*b*c^3/x+1/8*c^4*b*ln(c*x+1)

________________________________________________________________________________________

Maxima [A]  time = 0.987132, size = 81, normalized size = 1.69 \begin{align*} \frac{1}{24} \,{\left ({\left (3 \, c^{3} \log \left (c x + 1\right ) - 3 \, c^{3} \log \left (c x - 1\right ) - \frac{2 \,{\left (3 \, c^{2} x^{2} + 1\right )}}{x^{3}}\right )} c - \frac{6 \, \operatorname{artanh}\left (c x\right )}{x^{4}}\right )} b - \frac{a}{4 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))/x^5,x, algorithm="maxima")

[Out]

1/24*((3*c^3*log(c*x + 1) - 3*c^3*log(c*x - 1) - 2*(3*c^2*x^2 + 1)/x^3)*c - 6*arctanh(c*x)/x^4)*b - 1/4*a/x^4

________________________________________________________________________________________

Fricas [A]  time = 1.92559, size = 117, normalized size = 2.44 \begin{align*} -\frac{6 \, b c^{3} x^{3} + 2 \, b c x - 3 \,{\left (b c^{4} x^{4} - b\right )} \log \left (-\frac{c x + 1}{c x - 1}\right ) + 6 \, a}{24 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))/x^5,x, algorithm="fricas")

[Out]

-1/24*(6*b*c^3*x^3 + 2*b*c*x - 3*(b*c^4*x^4 - b)*log(-(c*x + 1)/(c*x - 1)) + 6*a)/x^4

________________________________________________________________________________________

Sympy [A]  time = 1.16585, size = 46, normalized size = 0.96 \begin{align*} - \frac{a}{4 x^{4}} + \frac{b c^{4} \operatorname{atanh}{\left (c x \right )}}{4} - \frac{b c^{3}}{4 x} - \frac{b c}{12 x^{3}} - \frac{b \operatorname{atanh}{\left (c x \right )}}{4 x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x))/x**5,x)

[Out]

-a/(4*x**4) + b*c**4*atanh(c*x)/4 - b*c**3/(4*x) - b*c/(12*x**3) - b*atanh(c*x)/(4*x**4)

________________________________________________________________________________________

Giac [A]  time = 1.21371, size = 92, normalized size = 1.92 \begin{align*} \frac{1}{8} \, b c^{4} \log \left (c x + 1\right ) - \frac{1}{8} \, b c^{4} \log \left (c x - 1\right ) - \frac{b \log \left (-\frac{c x + 1}{c x - 1}\right )}{8 \, x^{4}} - \frac{3 \, b c^{3} x^{3} + b c x + 3 \, a}{12 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))/x^5,x, algorithm="giac")

[Out]

1/8*b*c^4*log(c*x + 1) - 1/8*b*c^4*log(c*x - 1) - 1/8*b*log(-(c*x + 1)/(c*x - 1))/x^4 - 1/12*(3*b*c^3*x^3 + b*
c*x + 3*a)/x^4